4.5

Pythagoras' theorem

Introduction

Pythagoras' theorem relates the lengths of the sides of a right-angled triangle. This leaflet reminds you of the theorem and provides some revision examples and exercises.

1. Pythagoras' theorem

Study the right-angled triangle shown.

In any right-angled triangle, $A B C$, the side opposite the right-angle is called the hypotenuse. Here we use the convention that the side opposite angle A is labelled a. The side opposite B is labelled b and the side opposite C is labelled c.

Pythagoras' theorem states that the square of the hypotenuse, $\left(c^{2}\right)$, is equal to the sum of the squares of the other two sides, $\left(a^{2}+b^{2}\right)$.

$$
\text { Pythagoras' theorem: } \quad c^{2}=a^{2}+b^{2}
$$

Example

Suppose $A C=9 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$ as shown. Find the length of the hypotenuse, $A B$.

Solution

Here, $a=B C=5$, and $b=A C=9$. Using the theorem

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
& =5^{2}+9^{2} \\
& =25+81 \\
& =106 \\
c & =\sqrt{106}=10.30 \quad(2 \mathrm{dp} .)
\end{aligned}
$$

The hypotenuse has length 10.30 cm .

Example

In triangle $A B C$ shown, suppose that the length of the hypotenuse is 14 cm and that $a=B C=$ 3 cm . Find the length of $A C$.

Solution

Here $a=B C=3$, and $c=A B=14$. Using the theorem

$$
\begin{align*}
c^{2} & =a^{2}+b^{2} \\
14^{2} & =3^{2}+b^{2} \\
196 & =9+b^{2} \\
b^{2} & =196-9 \\
& =187 \\
b & =\sqrt{187}=13.67 \tag{2dp.}
\end{align*}
$$

The length of $A C$ is 13.67 cm .

Exercises

1. In triangle $A B C$ in which $C=90^{\circ}, A B=25 \mathrm{~cm}$ and $A C=17 \mathrm{~cm}$. Find the length $B C$.
2. In triangle $A B C$, the angle at B is the right-angle. If $A B=B C=5 \mathrm{~cm}$ find $A C$.
3. In triangle $C D E$ the right-angle is E. If $C D=55 \mathrm{~cm}$ and $D E=37 \mathrm{~cm}$ find $E C$.

Answers

1. 18.33 cm . (2dp.)
2. $A C=\sqrt{50}=7.07 \mathrm{~cm}$. (2dp.)
3. $E C=\sqrt{1656}=40.69 \mathrm{~cm}$. (2dp.)
